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Abstract—Uneven stairs and ground obstacles often cause
legged robots to trip and even fall over. Autonomous traversal
requires robots to detect leg disturbances accurately and react
in time. We present an approach that combines a leg observer
for contact detection with reactive behavior for recovery. Ex-
ploiting the mechanical transparency of the robot design, the
observer achieves leg proprioception and contact identification
with minimal delay. Reactive algorithms then trigger the robot
to switch between walking and stair-climbing, or to adjust
swing leg trajectories to step over obstacles. We demonstrate
the reliability and potential of the contact observer on robust
stair climbing. We envision that future work will establish an
autonomy framework for legged robots to traverse through multi-
component natural terrains using similar proprioceptive sensing
strategies and reactive behaviors.

I. INTRODUCTION

Legged robot can traverse through various difficult terrains
that obstruct traditional wheeled or tracked robots, benefiting
from large leg workspace and contact geometry reconfigura-
tion [1]. However, as one of the most common obstacles in
both indoor and outdoor environments, stairs remain challeng-
ing for legged robots to climb over. Due to the inherent ge-
ometry of normal stairs, small-sized legged robots often need
to use more dynamic gaits such as jumping and bounding [2],
and compositions of these dynamic behaviors often risk the
stability of the robots. Timely transitions between behaviors
require precise detection of the stair tread. In addition, any
unexpected disturbances on the stairs may cause the robots to
lose balance and even fall over, demanding quick detection
and recovery.

For robust autonomous stair climbing, we believe that
exteroception with camera and other sensors is essential to the
overall system in the future. But robots cannot entirely rely
on the the visual approach: small bumps on the stairs may be
difficult for the camera to notice, and the camera view is often
occluded. Computer vision algorithms are yet to be developed
to accommodate the highly dynamic motion of legged robots,
with the state of the art likely to generate insufficiently
precise stair location data. Meanwhile, proprioceptive sensing
provides a more intuitive and reliable solution to contact and
disturbance detection. Using motor encoders and IMU built-in
on the robot, it can “feel” the object and perceive its orientation
as it walks through terrains. It is usually computationally
inexpensive, thus reducing the detection latency and allowing
for in-time recovery.

Our vision is to let the robot traverse through any type
of stairs in any environment. Most of the existing stairs are
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designed specifically for human walking, and the relative
size of the stair may pose a problem for the robot. Our
earlier attempts showed that the high slope of some stairs
consistently led to loss of stability during behavior transitions.
Furthermore, outdoor stairs are often rugged and uneven, even
sometimes tripping humans. To simulate a similar setting in an
indoor, controlled environment, we chose a set of stairs with
a smaller slope (about 30 degrees), and place obstacles on the
stairs. The robot is expected to trot towards the stair, detect
and ascend, and recover from disturbances.

Fig. 1. Minitaur robot on the stairs used for testing.

Here we present the beginning of a solution to robust stair
climbing of the robot. The gaits used include trotting on the
ground for approaching the stairs, trotting on the stairs for
aligning with the next one, and bounding of the front and rear
legs alternatively for ascending the stairs. Leg state estimation
is achieved with both offline simulation and online observers,
which only require motor shaft encoders as the onboard sensor.
As the robot walks towards the stair with a pre-defined leg
trajectory, the actual leg positions from the encoders are
compared to the outputs of the offline simulation, forming
the residual values. A significant residual value during the
expected air phase indicates the leg contact with the first stair,
and signals the robot to start bounding up. Meanwhile, upward
bounding of the legs does not follow a specific leg trajectory,
and a online observer is necessary to generate expected leg
states. High residual values indicate either the leg touchdown
or the presence of obstacles at the legs, which quickly adapts
to a certain trajectory for recovery.

The paper is organized as follow: the following subsection



presents major related works in robot stair climbing, and some
background and justifications of the robot used in our stud-
ies. Section II introduces the proprioceptive sensing in more
details, explaining the offline simulation and online observer
in the use of disturbance detection. Section III demonstrates
the gait compositions for stair climbing, and the reactive
behaviors for disturbance recovery. Section IV documents the
experimental results of the detection algorithm and reactive
behavior. The paper finishes with a conclusion and multiple
future directions.

A. Related work

Stair climbing has been researched with different types of
robots and strategies. Tracked robots enjoy enhanced stability
over traditional wheel robots thanks to greater ground contact
area and lower center of gravity. Xiong and Matthies [3]
demonstrated using computer vision algorithms to locate the
stair edges and determine the relative orientation of the stair
and robot for guidance. Steplight et al. [4] developed a
hierarchical stair-climbing model using sensor fusion for a
tracked robot, and work in [5] improved the robustness of
the sensor fusion approach by introducing extended Kalman
filtering for state estimation. Meanwhile, few legged robots
have been used in stair climbing. One of the earliest versions
of the RHex hexapod robot exploits a special curved leg design
[6] for stair clmbing. The RHex robot further incorporated stair
sensing and sequential compositions of controllers to achieve
autonomy [7], [8].

However, almost all of these works demonstrated the climb-
ing strategies on regular indoor stairs with no obstacles. Some
of the works [5] dealt with collisions with stairs but not
any unexpected irregularities of the stair shape. It is certain
that most of the algorithms would fail in an outdoor rugged
environment, where the stairs may be littered with small
obstacles.

Fig. 2. Outdoor stairs at Schenley Park, Pittsburgh, PA.

We addressed the problem with a quadrupedal platform, the
Minitaur from Ghost Robotics (Fig. 1). Each leg is lightweight
(Table 1) and driven by two DC brushless motor with no
gearbox. This direct-drive design results in high mechanical

transparency [9], which enables high leg acceleration and
ground impulse detection in minimal delay. It has been demon-
strated that the Minitaur is capable of a series of stable,
dynamic maneuvers including bounding and trotting [10]. We
believe that the high maneuverability and high mechanical
transparency render the robot a competent choice for stair
climbing. It is also equipped with motor encoders and an IMU,
and the STM32 ARM microcontroller onboard updates motor
commands at a maximum of 1 KHz subject to the amount of
computations.

One issue that we encountered was that the leg length of
Minitaur is almost the same as the height of normal-sized
stairs, which causes difficulty in walking up the stairs. Topping
et al. [2] documented the quasi-static mismatch between
Minitaur and normal-sized stairs due to the leg size and
torque limit, introducing a dynamic, pronking-like gait for stair
ascent. However, we believe that this gait is vulnerable to any
disturbance on the stairs. With all four legs in the air and hence
no ground contact when any collision occurs, the robot is likely
to lose stability and fall over on the stairs. Instead we adopt
a less dynamic, bounding-like gait, with front and rear pairs
of legs ascending alternatively. While the other pair of legs is
anchored to the floor, the legs in the air are able to quickly
adjust the trajectory when contacting obstacles, maintaining
whole-body stability.

While we intend to develop a complete stair climbing
behavior for the Minitaur, our focus in this paper, as the first
step towards robust traversal over uneven stairs, is to introduce
proprioceptive sensing for obstacle detection. Disturbance ob-
server has been applied on multiple legged robot platforms,
including the RHex robot [11] and some humanoids [12].
While many other novel approaches, such as using particle
filtering [13] or probabilistic contact fusion [14] have emerged,
we believe that a simple, deterministic observer model is
sufficient to spot the changes in leg dynamics caused by
the obstacles. Also, the simple model is less demanding in
computations for the sole onboard microcontroller. As the
target terrain becomes more complicated, we would improve
upon the simple model in the future.

II. PROPRIOCEPTIVE SENSING

The general approach is to simulate the 2D leg motion in
finite time steps. We ignore the contact force and focus on the
period when the legs are in the air. Significant deviations from
the expected states (high residuals) indicate that the leg has
“felt” a stair or obstacle.

A. Leg Dynamics

The Minitaur robot has a symmetric five-bar mechanism for
each of the four legs. Each leg is driven by two brushless DC
motors to move in the sagittal plane. The kinematics of the
mechanism is detailed in [9]. We assume that the center of
mass of each link is located at the geometric center.

We use Euler-Lagrange equations to solve the leg dynamics.
The generalized coordinates are θ ∈ R2×1, the two motor
angles. Consider the following equation of motion.



M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ (1)

where M ∈ R2×2 is the mass matrix obtained by combining
the mass each of the four link in a leg, C ∈ R2×2 is the
Coriolis matrix, N ∈ R2×1 is a vector that contains gravity
and joint friction terms, and τ ∈ R2×1 is the torque vector
from the ideal motor model based on the applied PWM ,

τ = KtI (2)

I =
0.95 · V · PWM − Vemf

R
(3)

Vemf = Ktθ̇ (4)

where Kt is the torque constant (and the back electromotive
force (emf) constant), V is the supplied voltage measured by
onboard sensor, R is the armature resistance. The 5% voltage
deduction is built-in and confirmed with Ghost Robotics. A
standard proportional-derivative (PD) controller determines the
motor PWM value as follows,

PWM = Kp(θd − θ) +Kd(0− θ̇) (5)

where Kp and Kd are the proportional and derivative gains,
and θd is the target position. Note that we do not set a
reference velocity here. The controller gains are tuned for
stable behavior.

B. Model Parameters
Accurate model parameters are critical to the performance

of the offline simulation and online observer. Below are all
the major parameters that we considered.

TABLE I
MODEL PARAMETERS, FINAL VALUES, AND SOURCES

Limb

Parameters Value Source

Upper limb length (m) 0.1 Measured

Lower limb length (m) 0.2 Measured

Upper limb mass (kg) 0.040 Measured

Lower limb mass (kg) 0.081 Measured

Upper limb inertia (kg-m2) 0.00023 Estimated

Lower limb inertia (kg-m2) 0.00068 Estimated

Motor

Torque Constant (Nm/A) 0.0959 Estimated

Rotor Inertia (kg-m2) 0.00005 Estimated

Static Friction (Nm) 0.056 [9]

Kinetic Friction (Nm) 0.023 [9]

Viscous Friction ( Nm
rad/s

) 0.00013 [9]

Armature Resistance (Ω) 0.180 Estimated

Others

Joint Viscous Friction ( Nm
rad/s

) 0.0037 Estimated

Time delay (ms) 3 Estimated

1) Limbs: Limb length and mass are measured directly.
Initially we estimated the limb inertia from the CAD model,
but the extra weight of the bolts and bearings at the joints
were ignored in that case.

2) Motors: The motor friction values are from [9], which
also provided an overestimated value of the motor rotor inertia.
The torque constant and armature resistance values are both
provided by the motor manufacturer, but any partial burnout
of the motors may have affected the values.

3) Time delay: For the offline model, the time delay be-
tween the mainboard and the motor controller needs to be
taken into account. The effect of the time delay on the stability
of the Minitaur robot is documented in [15]. When we ran
simulation with a fairly long time delay (10ms), the result
showed instability of the legs.

Overall, we estimated the limb inertia, torque constant,
armature resistance, rotor inertia of the motor, and time
delay. We collected the sample data by running the triangular
trajectory of the legs in the free air, and the speed ramped
up from 1 to 2.5 strides per second. The cost function was
set to the total error per millisecond (per update) from all the
samples. We chose the constrained Nelder-Mead method [16],
which uses variable transformation to set the upper and lower
bounds of the estimated parameters. We ran the method with
different initial values within the bounds. The results were
consistent and reasonable, listed in the Table 1. The estimated
limb inertia is higher than the estimations from the CAD
model, possibly due to the extra weight of bolts and bearings.
The torque constant and armature resistance provided in the
motor specifications is 0.0959 Nm/A and 0.186 Ω respectively,
exactly the same as or very close to the estimation results. The
estimated time delay value is consistent with [15].

C. Offline Simulation

When the robot trots on the ground, the legs follow a
pre-defined reference trajectory, an isosceles triangle in the
Cartesian space. We simulated the trotting gait of the robot
with 1ms time step in Matlab by solving the leg dynamics.
The outputs of the simulation, θ̂ and ˆ̇

θ, are compared to the
leg position θ and velocity θ̇ recorded in real robot trials, and
the observer residuals of the simulation are formed by taking
the average of the absolute values of both motors:

rθ =
sum(|θ̂ − θ|)

2
(6)

rθ̇ =
sum(| ˆ̇θ − θ̇|)

2
(7)

We collected leg data at a median speed (1.25 stride per
second) in both conditions of swinging in the air and trotting
on the ground, and plot rθ and rθ̇ with controller tracking
error (θd − θ and θ̇d − θ̇) in Fig. 3 and 4. The shaded green
region indicates the expected stance phase of the gait.

The figures show that the tracking errors in the expected
flight phase is much higher than the observer residuals. Due to
the nature of PD controller, the leg cannot follow the corners of
the triangular trajectory well where high acceleration occurs,
while the model-based simulation accounts for the inertial
effect. Therefore, if the leg experiences any disturbance in the
air, the increasing residual values should indicate the event,



(a) Position residual (red), rθ , and position tracking error (black), θd − θ

(b) Velocity residual (red), rθ̇ , and velocity tracking error (black), θ̇d − θ̇

Fig. 3. Observer residual compared to PD controller tracking error in position
and velocity in a free swinging cycle (no disturbance from the ground). Green
shading indicates the expected stance phase.

(a) Position residual (red), rθ , and position tracking error (black), θd − θ

(b) Velocity residual (red), rθ̇ , and velocity tracking error (black), θ̇d − θ̇

Fig. 4. Observer residual compared to PD controller tracking error in position
and velocity in a trotting stride cycle (disturbance from the ground). Green
shading indicates the expected stance phase.

while the tracking errors would not be able to. Although the
velocity residual values show the similar trend, the position
data alone was sufficient to capture the abrupt change in leg
dynamics.

Note that during the expected stance phase, both residual
and tracking error values are high since we ignore the ground

contact force in the leg dynamics. The leg disturbance during
the stance phase is not within the interest of this paper, and
would require contact force estimation.

D. Online Observer

While the robot trots on the flat ground with a pre-defined
trajectory, the legs do not follow a specific trajectory when
the robot climbs up stairs. Many of the dynamic maneuvers
on the stairs are closely sequenced and some involve open-
loop power. While this can still be simulated, the errors in
residual values are likely to accumulate, and affect the initial
conditions of the legs at a certain step within the sequenced
behavior. This leads to the necessity of a memoryless, online
observer that predicts leg states as the robot bounds up stairs.
At each time step, the observer reads the current states of the
legs from the motor encoders, and outputs the predicted states
at the next time step for comparison.

1) Reduced dynamics: Since the computational power of
the onboard microcontroller is limited, we adopted a reduced
dynamics model instead. The Coriolis terms take a fair amount
of overall computations, but the values are usually small
enough to be negligible. We also remove the joint friction
terms. The equation of motion is reduced to:

M(θ)θ̈ +N(θ) = τ (8)

Since the robot always has at most two legs in the air when it
climbs up stairs, only two observers run at the same time. The
computations benchmark at about 2ms per cycle. However, the
leg states do not change significantly in 2ms even if the leg
hits an obstacle. When the rear legs lift off the ground and
swing forward in the air, the residual shows a small amount
of error due to the inertial effect, which is comparable to the
residual caused by the obstacle. Therefore, we extended the
observer time step from 2ms to 5ms, and the results were able
to differentiate hitting the obstacle from swinging forward as
shown in Fig. 5. Now the motor commands update at 200 Hz
during stair ascent as opposed to 1 KHz during trotting. The
update rate is still fast enough for quick reactive behaviors in
the case of leg disturbances.

Given the changes in the model, we re-ran the parameter
estimation using the same constrained Nelder-Mead method
on the same selected parameters, except for the removed joint
viscous friction coefficient. The results were very close to
those listed in Table 1 and the differences are negligible.

To compare the performance of the reduced and full models,
we calculated the position residuals summed in a free swinging
cycle at a median speed (1.25 strides per second) using both
models. We also simulated the 200 Hz update rate on both
models. The results are listed in Table 2 below. The lower
update rate does not affect the performance significantly. The
model reduction results in an increase in errors, but still within
a reasonable range. The goal of the online observer is to
capture the sudden impulse at the leg instead of tracking a
specific trajectory, thus not as demanding in performance. Fig.
5 shows that the reduced model is sufficient to pick up such
impulses from obstacle contacts.



(a) Position residual

(b) Velocity residual

Fig. 5. Online observer residuals when the rear legs are in the air and the
rear right leg hits an obstacle. The three peaks corresponds to: 1. swinging
forward, 2. obstacle contact, 3. touchdown

TABLE II
PERFORMANCE OF THE FULL AND REDUCED MODELS AT DIFFERENT

UPDATE RATED

Model Type Update Rate (Hz) Error (Rad)
Full 1000 7.57
Full 200 7.68

Reduced 1000 16.60
Reduced 200 16.86

III. STAIR CLIMBING AND REACTIVE BEHAVIOR

After we developed both the offline model-based simulation
and the online observer, we would like to apply these strategies
in rugged stair climbing. However, we quickly encountered
difficulty in developing a reliable stair climbing gait for the
Minitaur. Since the robot is not capable of walking up stairs, it
has to use gaits that are more dynamic such as bounding. With
no existing controller for stair ascent, tuning open-loop power
and controller gains turned out to be very time-consuming.
Another issue was that the supporting legs on the ground often
slip off the stairs when the other pair bound, causing the robot
to fall off the stairs. We reduced the slippage by applying open-
loop power to generate more normal force. The current gait
is robust enough to ensure that the robot does not slip off the
stairs.

The stair climbing behavior consists of a few major com-
ponents.

A. Trotting on the Floor and Stair Detection

The robot trots with a pre-defined triangular trajectory
towards the first stair, and calculates the residual values using
offline simulation outputs and motor encoder readings. The
robot would check the residual values within a time range
when the legs are expected in the air, determined based on
offline simulation results.

Initially we would like to put some obstacles on the ground,
and the robot would detect them and step over them with
fast leg circulation. However, we could not find a method that
consistently differentiates the obstacle and the stairs. Therefore
the robot now treats the first stair as the disturbance and then
starts stair climbing.

B. Legs Bounding

In order to climb the stairs, the front and rear legs of the
robot bound upstairs alternatively. The bounding legs push
off the ground, retract until minimum length, swing forward
in the air, and touch down (Fig. 6). The supporting legs
apply open-loop power into stair to generate normal force for
balance. Meanwhile, two observers update the residual values
of the bounding legs. While the leg touchdown generates high
residual values, the expected touchdown time is known to the
robot. The robot would treat the high position and velocity
residual values as hitting an obstacle if it occurs before the
expected touchdown.

C. Disturbance Recovery

Once the leg observer reports the presence of an obstacle,
the affected leg retracts to the minimum length and swings
forward, stepping onto the obstacle. Meanwhile, the two legs
on the other diagonal extend more to lift up the whole robot
body.

D. Trot on the stair tread

When both the front and rear legs have bounded up, there is
usually some space between the front legs and the next stair.
The front legs have to start bounding right next to the stair,
otherwise they will not be able to catch it due to geometric
limit. We rotate the triangular trajectory of the ground trotting
to match the slope of the stairs, and the robot was able to trot
forward with small steps and align itself with the next stair.
After a certain time threshold, the next bounding cycle starts.

E. Exit the stairs

Detecting the end of staircase is straightforward. Once the
IMU reports a very small pitch angle after a bounding cycle,
the robot knows that it has reached the top of the stairs. It
would trot forward for some distance and stop.



Fig. 6. The rear legs bound up the stair in 450ms.

IV. EXPERIMENTAL RESULTS

We test the performance of the offline simulation, online
observer, and stair-climbing gait separately. Eventually we
would like to place random obstacles on the stairs and conduct
an experiment survey on stairs of various dimensions and
surface conditions.

1) Stair Detection with Offline Simulation: We let the robot
start trotting at ten locations, ranging from 0.2 meter to 2 meter
from the stairs. The robot was able to detect the stairs every
time within two leg cycles once it contacted the stair.

Ideally the robot should detect the stair within the same
leg cycle. However, we found that the stair contact sometimes
occurred right before the leg hit the ground. If the end of the
detection time range is set too close to the start of the ground
phase, the robot often mistook the ground for the stair. Some
delay on the ground is sacrificed for the extra accuracy of stair
detection.

2) Obstacle Detection with Online Observer: A brick-like
obstacle was placed on the stair, and tripped the rear right leg
of the robot as it swung forward in the air. During initial tests,
the robot was able to detect the obstacle consistently.

3) Stair Climbing Robustness: We challenged the robot to
keep climbing the stairs before it failed. During initial tests,
the robot was able to climb about five to ten stairs.

We realized that PWM control for bounding is not sufficient
for robustness. As the robot climbed upstairs, the bounding
height of the legs decreased given the same PWM values
since the motors started to overheat and the battery charge
is reduced. The bounding discrepancies caused the robot to
trip on the stairs, or steer sideways and lose balance.

V. CONCLUSION

This work addresses the robustness of the stair climbing of a
quadruped by incorporating proprioceptive sensing and climb-
ing behavior. Offline simulation models and online observers
are developed for disturbance detection. The robot is able to
detect the stairs, bound up the stairs, and react to obstacles
by quickly adjusting the leg trajectory. More experiments are
yet to be completed. We believe that proprioceptive contact

detection and reactive behavior would be crucial to the robust
traversal of stairs.

Certainly the overall stair climbing framework is not quite
complete yet. Parts of the climbing behavior we introduced
rely on open-loop control, causing issues such as slipping of
the supporting legs. Although our main focus has been using
proprioceptive sensing to improve the robustness, we hope
to establish a better stair climbing model for behavioral de-
velopment, integrating force and impedance control. Another
ongoing project at our lab is to investigate the effect of tails
on dynamic maneuverability of the Minitaur robot. We believe
that active actuation of an inertial or aerodynamic tail would
maintain the stability of the robot during stair ascent, and
even help achieve certain dynamic behavior that is otherwise
infeasible.

Other future works include adding an extra onboard com-
puter to enable online, full dynamics disturbance detection.
The extra computational power also enables many other im-
provements, including whole body modeling, contact force
sensing, sensor fusion, and sequential compositions [17] of
online controllers. A newer version of the Minitaur robot also
provides current sensing, which would allow motor current
control and improve the accuracy of the online observer by
skirting the ideal motor model.

Beyond the scope of stair climbing, we envision that pro-
prioceptive sensing and model-based behavioral development
would be critical components of the overall terrain locomotive
framework of the legged robot. The robot may combine these
components with other approaches such as vision detection to
fulfill robust traversal through any terrains.
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